Publish or Perish

You may like to try analysing your citations with Publish or Perish, a free piece of software which uses Google Scholar data.

Information on Publish or Perish is available at: http://www.harzing.com/pop.htm. The software itself can be downloaded at http://www.harzing.com/pop_win.htm - instructions are on the site. Once installed you can access it from Start – Programs on your computer.

Entering an author

Enter the name as it is usually given in publications but with quotation marks around it which will help to cut out some irrelevant citations. For example “A B Jones” or “Alexander Jones” if you usually publish using your full name.

If you have published under a variety of names you can link them with OR, for example “A B Jones” or “Alexander Jones” would find both.

Uncheck any irrelevant subject areas to cut down the number of incorrect hits.

Once you have run the search, check through the citations to make sure they are all for the correct author. Untick any which are not. The software will automatically recalculate the results without you needing to do anything else.

Some caveats

When using Publish or Perish for citation analyses you need to be aware that:

- If an academic shows good citation metrics, it is very likely that he or she has made a significant impact on the field. However, the reverse is not necessarily true. If an academic shows weak citation metrics, this may be caused by a lack of impact on the field, but also by one or more of the following:
 - Working in a small field (therefore generating fewer citations in total);
 - Publishing in a language other than English
 - Publishing mainly (in) books.

Although Google Scholar performs better than the Web of Science in this respect, it is still not very good in capturing foreign language articles and citations, or citations in books or book chapters. As a result, citation metrics in the Social Sciences and even more so in the Humanities will always be underestimated.
Metrics given in Publish or Perish

Hirsch's h-index

Proposed by J.E. Hirsch in his paper An index to quantify an individual's scientific research output, arXiv:physics/0508025 v5 29 Sep 2005. It aims to provide a robust single-number metric of an academic's impact, combining quality with quantity.

Egghe's g-index

Proposed by Leo Egghe in his paper Theory and practice of the g-index, Scientometrics, Vol. 69, No 1 (2006), pp. 131-152. It aims to improve on the h-index by giving more weight to highly-cited articles.

Contemporary h-index

Proposed by Antonis Sidiropoulos, Dimitrios Katsaros, and Yannis Manolopoulos in their paper Generalized h-index for disclosing latent facts in citation networks, arXiv:cs.DL/0607066 v1 13 Jul 2006. It aims to improve on the h-index by giving more weight to recent articles, thus rewarding academics who maintain a steady level of activity.

Age-weighted citation rate (AWCR) and AW-index

The AWCR measures the average number of citations to an entire body of work, adjusted for the age of each individual paper. It was inspired by Bihui Jin's note The AR-index: complementing the h-index, ISSI Newsletter, 2007, 3(1), p. 6. The Publish or Perish implementation differs from Jin's definition in that we sum over all papers instead of only the h-core papers.

Individual h-index (original)

The Individual h-index was proposed by Pablo D. Batista, Monica G. Campiteli, Osame Kinouchi, and Alexandre S. Martinez in their paper Is it possible to compare researchers with different scientific interests?, Scientometrics, Vol 68, No. 1 (2006), pp. 179-189. It divides the standard h-index by the average number of authors in the articles that contribute to the h-index, in order to reduce the effects of co-authorship.

Individual h-index (PoP variation)

Publish or Perish also implements an alternative individual h-index that takes a different approach: instead of dividing the total h-index, it first normalizes the number of citations for each paper by dividing the number of citations by the number of authors for that paper, then calculates the h-index of the normalized citation counts. We believe that this approach more accurately accounts for any co-authorship effects that might be present and that it is a better approximation of the per-author impact, which is what the original h-index set out to provide.

Multi-authored h-index

A further h-like index is due to Michael Schreiber and first described in his paper To share the fame in a fair way, h_m modifies h for multi-authored manuscripts, New Journal of Physics, Vol 10 (2008), 040201-1-8. Schreiber's method uses fractional paper counts instead of reduced citation counts to account for shared authorship of papers, and then determines the multi-authored h_m index based on the resulting effective rank of the papers using undiluted citation counts.